NOx cycle and the tropospheric ozone isotope anomaly: an experimental investigation

نویسندگان

  • G. Michalski
  • S. K. Bhattacharya
چکیده

The oxygen isotope composition of nitrogen oxides (NOx) in the atmosphere is a useful tool for understanding the oxidation of NOx into nitric acid / nitrate in the atmosphere. A set of experiments was conducted to examine change in isotopic composition of NOx due to NOx–O2– O3 photochemical cycling. At low NOx / O2 mixing ratios, NOx became progressively and nearly equally enriched in 17O and 18O over time until it reached a steady state with 117O values of 39.3± 1.9 ‰ and δ18O values of 84.2± 4 ‰, relative to the isotopic composition of the initial O2 gas. As the mixing ratios were increased, the isotopic enrichments were suppressed by isotopic exchange between O atoms, O2, and NOx. A kinetic model was developed to simulate the observed data and it showed that the isotope effects occurring during O3 formation play a dominant role in controlling NOx isotopes and, in addition, secondary kinetic isotope effects or isotope exchange reactions are also important during NOx cycling. The data and model were consistent with previous studies which showed that the NO + O3 reactions occur mainly via the transfer of the terminal atoms of O3. The model predicts that under tropospheric concentrations of NOx and O3, the timescale of NOx–O3 isotopic equilibrium ranges from hours (for ppbv NOx / O2 mixing ratios) to days (for pptv mixing ratios) and yields steady state 117O and δ18O values of 45 ‰ and 117 ‰ respectively (relative to Vienna Standard Mean Ocean Water (VSMOW)) in both cases. Under atmospheric conditions when O3 has high concentrations, the equilibrium between NOx and O3 should occur rapidly (h) but this equilibrium cannot be reached during polar winters and/or nights if the NOx conversion to HNO3 is faster. The experimentally derived rate coefficients can be used to model the major NOx–O3 isotopologue reactions at various pressures and in isotope modeling of tropospheric nitrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of tropospheric ozone concentration trend of Kermanshah by meteorological parameter and ozone precursor and OMI images

Abstract: Clean air is a necessity for human well-being and health. Air pollution is a major threat to humans and other organisms and is considered as one of the environmental challenges. Today, with the increase in air pollution, the need to know more about the causes of its occurrence has been raised. The various consequences of air pollution have made air quality monitoring and control inev...

متن کامل

1 Heterogeneous Chemistry and Tropospheric Ozone

Ozone is produced in the troposphere by gas-phase oxidation of hydrocarbons and CO catalyzed by hydrogen oxide radicals (HOx ≡ OH + peroxy radicals) and nitrogen oxide radicals (NOx ≡ NO+NO2). Heterogeneous chemistry involving reactions in aerosol particles and cloud droplets can perturb O3 concentrations in a number of ways including production and loss of HOx and NOx, direct loss of O3, and p...

متن کامل

The zonal structure of tropical O3 and CO as observed by the Tropospheric Emission Spectrometer in November 2004 – Part 2: Impact of surface emissions on O3 and its precursors

The impact of surface emissions on the zonal structure of tropical tropospheric ozone and carbon monoxide is investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions.Vertical ozone profiles from the Tropospheric Emission Spectrometer (TES) and ozone sonde measurements from the Souther...

متن کامل

Global simulation of tropospheric O3-NOx-hydrocarbon chemistry 2. Model evaluation and global ozone budget

Results from a global three-dimensional model for tropospheric O3-NOx-hydrocarbon chemistry are presented and evaluated with surface, ozonesonde, and aircraft measurements. Seasonal variations and regional distributions of ozone, NO, peroxyacetylnitrate (PAN), CO, ethane, acetone, and H2O2 are examined. The model reproduces observed NO and PAN concentrations to within a factor of 2 for a wide r...

متن کامل

Impact of climate change on tropospheric ozone and its global budgets

We present the chemistry-climate model UM CAM in which a relatively detailed tropospheric chemical module has been incorporated into the UK Met Office’s Unified Model version 4.5. We obtain good agreements between the modelled ozone/nitrogen species and a range of observations including surface ozone measurements, ozone sonde data, and some aircraft campaigns. Four 2100 calculations assess mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014